
Synergistic Approach for Systems
with AXDIMMs, GPUs, and NVMe Devices
Heehoon Kim

Dept. of Computer Science and

Engineering

Seoul National University

Seoul, Republic of Korea

heehoon@aces.snu.ac.kr

Daeyoung Park
Dept. of Computer Science and

Engineering

Seoul National University

Seoul, Republic of Korea

daeyoung@aces.snu.ac.kr

Jinpyo Kim
Dept. of Computer Science and

Engineering

Seoul National University

Seoul, Republic of Korea

jinpyo@aces.snu.ac.kr

Junsik Shin
Dept. of Computer Science and

Engineering

Seoul National University

Seoul, Republic of Korea

junsik@aces.snu.ac.kr

Jaejin Lee
Dept. of Data Science

Dept. of Computer Science and

Engineering

Seoul National University

Seoul, Republic of Korea

jaejin@snu.ac.kr

Abstract

The existing Deep Learning frameworks, such as PyTorch

and TensorFlow, allocate all tensors on the GPU memory.

Since state-of-the-art DNN models, such as GPT-3, already

have larger tensors than the GPU memory, the GPU memory

oversubscription problem occurs. One emerging solution is

utilizing the CPU memory or storage devices to free up the

GPU memory by swapping. In this paper, we propose a plat-

form with an AXDIMM, a near-memory acceleration mem-

ory module developed by Samsung, to tackle the problem

with high performance. Our platform consists of a hardware

implementation of the Adam optimizer in the AXDIMM and

a software runtime to enable the AXDIMM to be used with

GPUs and NVMe SSDs. The platform offloads the parameter

and optimizer states to the AXDIMM. The overflowed ten-

sors from the AXDIMM are evicted to the NVMe SSDs and

restored from them as needed. A PyTorch-compatible library

is built on top of the platform, fully exploiting the synergy

between the GPU, AXDIMM, and NVMe SSDs to train a

large DNN model. The evaluation result with GPT models of

various sizes indicates that the AXDIMM outperforms the

normal DIMM. Our platform achieves up to 1.63× speedup

on the platform with a normal DIMM in training the large

DNN models.

1 Introduction

Near-Memory Computing (NMC) is a paradigm that aims

to perform computation near the memory[39]. While tra-

ditional processors like general-purpose CPUs try to pro-

vide higher bandwidth via memory hierarchy, the memory

bandwidth becomes a significant performance bottleneck

for applications with low locality. We can achieve a higher

memory bandwidth and energy efficiency by placing the

cores as near as possible.

Among others, an AXDIMM[20] is a DDR4-compatible

near-memory acceleration module developed by Samsung.

An AXDIMM has an FPGA equipped with ARM cores and

multiple ranks of DRAM inside it. While the CPU can access

only one rank at a time, the FPGA can access multiple ranks

in parallel, resulting in higher effective bandwidth.

Since the invention of Transformer[40], the number of

parameters of state-of-the-art DNN models has grown to

trillions. While GPUs are de-facto standard accelerators for

training DNN models, training such large DNN models on a

single GPU is impossible[9, 27, 28]. GPT-3[9], for example,

has 175 billion parameters whose size is 700GB in single-

precision floating-point format. However, even the state-of-

the-art high-end GPUs have less than 100GB of memory.

Note that training a DNNmodel requires more memory than

the size of the model parameters because there exist other

data, such as activations, gradients, and optimizer states.

By default, the existing Deep Learning (DL) frameworks,

such as PyTorch[25] and TensorFlow[6], allocate all tensors

of a DNN model in the GPU memory. If the maximum mem-

ory footprint of themodel exceeds the GPUmemory capacity,

the training process halts with the out-of-memory error.

A standard solution to such a memory capacity problem is

parallelizing the DNNmodel across multiple GPUs. The most

common parallelization techniques are exploiting various

data, model, and pipeline parallelism[17, 29, 36].

Another emerging solution is utilizing the main memory

or storage devices as a backup space of the GPU memory[30,

33], i.e., offloading some tensors to the host memory or stor-

age devices to free up the GPU memory space until the DNN

model reaccesses the tensors. Because only a small portion of

the GPUmemory is accessed at a time, we can offload the data

in the remaining GPU memory space to slower but larger

devices until the GPU reaccesses them. In this approach, the

1



Heehoon Kim, Daeyoung Park, Jinpyo Kim, Junsik Shin, and Jaejin Lee

GPU

Activations

Gradients

AXDIMM

Parameters

Optimizer
states

Forward
computation

Backward
computation

Parameters

Parameter
update

Gradients
• Parameters are fetched 

when accessed

• Parameters are updated in the 
AXDIMM in parallel with the 
backward computation in the GPU

NVMe SSDs

Parameters

Optimizer
states

• Parameters and optimizer states are 
evicted to NVMe SSDs from the 
AXDIMM when the available memory 
space of the AXDIMM is not enough

Allocated and freed during an iteration

Kept across iterations

DNN Model

The runtime

Figure 1. Overall workflow of the proposed platform.

communication between the GPU and the backup storage

devices should be minimized to achieve high performance.

For example, ZeRO-Offload[33] shows that placing the

model parameters and optimizer states on the host memory

and updating them by the CPU achieve the minimum com-

munication volume between the CPU and the GPU. When

the CPU computes the optimizer states, the model parame-

ters can be updated on the CPU side instead of transferring

optimizer states back to the GPU. However, those computa-

tions may be memory-intensive and interfere with the data

transfer, resulting in significant performance degradation.

In this paper, we propose a platform that synergistically ex-

ploits AXDIMM, a GPU, and NVMe SSDs to train large DNN

models that do not fit into the GPU memory. The proposed

platform consists of a hardware implementation of the pa-

rameter update pass on the AXDIMM, a software runtime to

control the AXDIMM and the AXDIMM-GPU or AXDIMM-

NVMe SSD communication, and a PyTorch[25]-compatible

library to support the training.

Figure 1 shows the overall workflow of the proposed plat-

form. Its primary difference from ZeRO-Offload[33] is that

it offloads the DNN parameters and optimizer states to the

AXDIMM instead of the host memory. Then, the FPGA in

the AXDIMM updates the parameters instead of the CPU.

Moreover, the excessive parameters and optimizer states in

the AXDIMM are saved in the NVMe SSDs and restored from

them when necessary.

Because the FPGA is located close to the DRAM in the

AXDIMM, it has a much higher memory bandwidth and

updates the parameters faster. It performs the parameter

update in parallel with the communication to the GPU as

the parameter update does not use the DDR4 link between

the CPU and the AXDIMM, resulting in better computation-

communication overlapping and shorter training time.

However, it is required to know the time when the param-

eters are accessed, and the gradients are computed to im-

plement the proposed workflow. To obtain the information,

we replace the functions in PyTorch for the layer compu-

tation with our implementation of the functions or utilize

the hooking mechanism provided by PyTorch to obtain the

information.

The major contributions of this paper are summarized as

follows:

• Weprovide an FPGA implementation on theAXDIMM.

The kernel in the FPGA implementation is easily re-

placed with another kernel to accelerate various ap-

plications.

• We design and implement a runtime that enables the

AXDIMM to be used with the GPU and NVMe SSDs.

To the best of our knowledge, our approach is the first

2



Synergistic Approach for Systems

with AXDIMMs, GPUs, and NVMe Devices

work that exploits the AXDIMM synergistically with

the GPU and the NVMe SSDs.

• We propose offloading the parameter update step to

the AXDIMM in training large DNN models to im-

prove performance. To support this idea, we provide

an easy-to-use PyTorch extension. The proposed tech-

nique is orthogonal to the typical parallelization ap-

proaches across GPUs. It can be adapted to the paral-

lelization approaches to train much larger DNN mod-

els.

• Experimental results show that the AXDIMM is 5.6x

faster on the parameter update and 1.26× to 1.63×

faster in training a GPT-based DNN model over the

normal host memory.

2 Background

In this section, we briefly overview Deep Learning (DL) and

describe the input and output for the Adam optimizer[21].

2.1 Deep Learning

DL is a subset of Machine Learning. It trains a Deep Neural

Network (DNN) model to make the model learn relationships

between the input and output. A DNN is usually modeled by

a data-flow graph where nodes are DNN layers and edges

represent the data dependences between the layers.

A layer in a DNN model is modeled as a function 𝐿 as

follows:

𝑌 = 𝐿(𝑋1, · · · , 𝑋𝑁 ). (1)

The inputs 𝑋1, · · · , 𝑋𝑁 and the output 𝑌 of the layer are

called tensors, in the sense that they are multi-dimensional

arrays. While some tensors (e.g., activations) are discarded

after being used as an input to a layer, the others (e.g., model

parameters) are stored and reused throughout the lifetime of

the model.

DNNs operate in two phases: inference and training. In the

inference phase, input data are fed into the DNN, and output

data are produced, assuming that DNN model parameters

have already been trained. The data are propagated through

the paths in the data-flow graph of the DNN model. This

process is called forward propagation or forward pass.

The training phase evaluates the DNN model output and

modifies the model parameters to make the DNN produce a

more accurate output. To evaluate the output, a loss function

is required. The loss function computes a scalar value, called

the loss or error that becomes smaller as the DNN model

output is closer to the expected target.

Whileminimizing the loss can be performed inmanyways,

the simplest is Stochastic Gradient Descent (SGD)[35]. SGD

optimizes the DNN model by updating its parameters 𝜃 as

follows:

𝜃 ← 𝜃 + 𝛾 ∗ ∇𝜃 𝑙, (2)

where ∇𝜃 𝑙 is the gradient of the loss function with respect

to 𝜃 , and 𝛾 is a hyper-parameter called the learning rate that

adjusts the amount by which the weights are updated.

To compute the gradients, each layer of the DNN model

should compute its input gradients from its output gradients

as follows:

∇𝑋 𝑙 = J𝐿∇𝑌 𝑙, (3)

where ∇𝑋 𝑙 is the input gradient, ∇𝑌 𝑙 is the output gradi-

ent, and J𝐿 is the Jacobian matrix of 𝐿. The gradients are

propagated through the DNN backward; hence this is called

backpropagation or backward pass. In summary, the training

phase of a DNNmodel consists of the forward pass, backward

pass, and weight updates.

Input: ∇𝜃 (𝜃𝑡−1), 𝜃𝑡−1,𝑚𝑡−1, 𝑣𝑡−1, 𝛾 , 𝛽1, 𝛽2, 𝜆, 𝑡

Output: 𝜃𝑡 ,𝑚𝑡 , 𝑣𝑡

𝑔𝑡 ← ∇𝜃 (𝜃𝑡−1) + 𝜆𝜃𝑡−1
𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡
𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡

2

𝑚𝑡 ←𝑚𝑡/(1 − 𝛽1
𝑡 )

𝑣𝑡 ← 𝑣𝑡/(1 − 𝛽2
𝑡 )

𝜃𝑡 ← 𝜃𝑡−1 − 𝛾𝑚𝑡/(
√︁
𝑣𝑡 + 𝜖)

Algorithm 1: The Adam algorithm at a training step 𝑡 .

2.2 Adam Optimizer

Due to the slow convergence rate of SGD, other stochastic

gradient-based optimizers have been invented. Adam [21] is

the most popular algorithm and widely used to train large

DNN models, such as BERT[10] and GPT[28].

SGD is stateless because it does not require any infor-

mation other than the gradients to update the DNN model

parameters. However, the Adam optimizer should maintain

two additional values𝑚 and 𝑣 per parameter, which are the

moving average of its gradients and the square of its gradient,

respectively. The tensors for𝑚 and 𝑣 represent the current

state of the optimizer and are called optimizer states.

In the aspect of memory accesses, Adam needs four loads

per parameter for the parameter𝜃𝑡−1 itself, a gradient∇𝜃 (𝜃𝑡−1),

and optimizer states𝑚𝑡−1 and 𝑣𝑡−1. In addition, it needs three

stores per parameter for the updated parameter 𝜃𝑡 and up-

dated optimizer states𝑚𝑡 and 𝑣𝑡 . Thus, the Adam optimizer

require a high memory bandwidth.

3 Implementations in the AXDIMM

AXDIMM[20] is a near-memory acceleration module devel-

oped by Samsung. AXDIMM has the DDR4 DIMM form

factor and can be placed in the memory slot of a mainboard.

With the reference design loaded in the AXDIMM’s FPGA,

the host CPU sees the AXDIMM as a 32GB dual-rank DDR4-

800 DIMM.

3



Heehoon Kim, Daeyoung Park, Jinpyo Kim, Junsik Shin, and Jaejin Lee

Table 1. AXDIMM Specification

FPGA
Xilinx Zynq Ultrascale+

(xczu19eg-ffvb1517-2LV-e)

DRAM
10 x K4ABG165WA-MCTD

(32Gb, DDR4, Up to 2666 Mbps)

Interfaces DDR4 DIMM, JTAG

AXDIMM

PHY IP

MIG 

IPCPU
DRAM

Ch. 0

AXDIMM

FPGA

Kernel

(a) Normal Mode

MIG 

IP
DRAM

Ch. 1
Kernel

(b) Acceleration Mode

Arbiter

Arbiter

Figure 2. The proposed architecture in the AXDIMM.

3.1 Proposed Architecture in the AXDIMM

Figure 2 shows the proposed architecture in the AXDIMM.

The AXDIMM reference design consists of an AXDIMM

PHY IP and two Memory Interface Generator(MIG) IPs. The

AXDIMM PHY IP deserializes the 400MHz DDR4 interface

from the host into the 200MHz interface with 512-bit data

width so that a computation kernel can be implemented in

the FPGA fabrics of the AXDIMM with a reasonable fre-

quency (The kernel in Figure 2). The MIG IP converts the

frequency to 800MHz and connects to the internal DRAM

chips. The DRAM chips are grouped into two independent

16GB channels. The AXDIMM PHY IP maps the ranks seen

by the host to the channels.

FCFS arbitration is problematic. Because both the host

and the kernel in the FPGA access the DRAM channels, they

require arbitration. However, the typical FCFS (First Come,

First Serve) arbitration of DDR4 transactions is problematic

because of the following two reasons:

• The host cannot change the read latency after the

system boots.

• The DRAM channels have a state for each bank.

Consider the following scenario. Suppose that the host ac-

tivates a row 𝑅0 of a bank and requests a read for the row,

and then the kernel accesses another row 𝑅1 of the same

bank. The arbiter precharges 𝑅0 after serving the host’s read

request and activate 𝑅1 to serve the kernel request. Sometime

later, the host requests a read for 𝑅0 again, thinking that 𝑅0
is still active. However, 𝑅0 is not active at this point because

of the kernel request. Thus, the host has to wait until the

precharging and activation finish, in addition to the read

latency. This worst-case scenario implies that the host’s read

latency should be set to a somewhat high value, resulting in

significantly reduced memory throughput between the host

and the AXDIMM module.

3.2 Arbiter Implementation in the FPGA

Thus, instead of having an FCFS-based arbiter, we implement

a simple arbiter with two exclusive modes: normal and ac-

celeration. In the normal mode, the host exclusively uses the

internal DRAM channels in the AXDIMM. All requests from

the kernel are blocked. In contrast, all requests from the host

are routed to the kernel in the acceleration mode. The kernel

exclusively accesses the internal DRAM channels.

To poll the current arbiter mode and switch it to the other,

requests to a specific address range are always routed to

the arbiter’s control and status registers (CSRs). Instead of

having the kernel generate DDR4 transactions, the arbiter

and the kernel connect through AXI4[1] interfaces for easy

kernel implementation. The arbiter converts the host’s DDR4

transaction to an AXI4 transaction with a fixed read latency

and the kernel’s AXI4 transaction to a DDR4 transaction.

Exploiting channel parallelism. Each DRAM channel

has its own arbiter and computation kernel. The arbiters

and kernels are controlled independently. The CPU can keep

reading from or writing to the internal DRAM by setting one

of the channels to the normal mode, even if the kernel uses

the other channel.

CSRs

...

FU0

X

512b

DRAM Host

+

-

+

+

X

X

FU15

512b

DRAM

...

32b 32b

128 cycles

𝜃𝑡
𝑚𝑡
𝑣𝑡

𝜃𝑡−1
𝑚𝑡−1𝑣𝑡−1

∇𝜃(𝜃𝑡−1)

Figure 3. Adam kernel architecture.

3.3 Adam Kernel Implementation in the FPGA

Figure 3 shows the architecture of our Adam kernel imple-

mentation in the FPGA. There are a total of sixteen func-

tional units (FU0, FU1, ..., FU15) for the Adam algorithm

with a single-precision floating-point format (FP32). Each

unit consists of 31 DSPs and is fully pipelined with a 128-

cycle latency. Because the data width of the interface to the

DRAM is 512 bits (= 32bits × 16), we implement 16 FUs to

process the inputs to the kernel in parallel. We use a FIFO

queue implemented in the FPGA on-chip memory to handle

each of the four inputs: 𝜃𝑡−1, ∇𝜃 (𝜃𝑡−1),𝑚𝑡−1, 𝑣𝑡−1 and three

outputs: 𝜃𝑡 ,𝑚𝑡 , 𝑣𝑡 of the kernel.

4



Synergistic Approach for Systems

with AXDIMMs, GPUs, and NVMe Devices

Hereafter, a block refers to a contiguous section of mem-

ory loaded or stored by the kernel each time. The block size

is a design parameter. The kernel keeps loading the blocks

of 𝜃𝑡−1, ∇𝜃 (𝜃𝑡−1),𝑚𝑡−1, and 𝑣𝑡−1 from the internal DRAM in

a round-robin manner and enqueues them into the corre-

sponding queues. Results (𝜃𝑡 ,𝑚𝑡 , and 𝑣𝑡 ) of the kernel are

also enqueued to the corresponding output queues, and the

kernel writes them back to the DRAM later.

The kernel has CSRs that have execution status and kernel

parameters, such as the addresses of the inputs and outputs,

constants used by the Adam algorithm, and the number of

parameters to update. After setting the arbiter to the accel-

eration mode, the host writes kernel parameters and signals

to the kernel to start. The host waits for the kernel to finish

execution by polling the status.

3.4 Effect of the Block Size

The size of the block determines the tradeoff between perfor-

mance and resource usage. Small block sizes may result in

precharging and activating many DRAM banks depending

on the address of the tensors, while large block sizes con-

sume more on-chip memory spaces. We set the block size to

16KB, which spans the two rows of all DRAM chips. Because

interleaved accesses to two different bank groups are faster

than consecutive accesses to a single bank group, reading

the entire contents of two rows from different bank groups

may improve performance.

Double buffering. To hide computation latency, we also

apply double buffering. Instead of waiting for the computa-

tion result from one block, the kernel loads another block

during the computation simultaneously. The separate in-

put and output queues in the kernel architecture make it

possible.

4 Runtime for the AXDIMM

In this section, we describe the design and implementation

of the proposed runtime system for the AXDIMM.

The memory space of the AXDIMM is reserved when

the system boots. However, the system should map it to

the virtual address space for an application. To do so, we

implement a Linux kernel module that creates a character

device that supports mmap call. During initialization, the

runtime calls mmap on the character device. The rest of the

runtime is implemented in the user space.

4.1 Cache Coherence

While address mapping is easy, we must carefully choose

the mapped pages’ cache mode. Since the DDR4 protocol

opted for the cache line size that is 64 bytes in the target

system, even a four-byte read results in a 64-byte read to

the AXDIMM if a page is set non-cacheable, significantly

reducing the effective memory throughput. On the other

hand, the host may read inconsistent values if the cache is

enabled because there is no way for the AXDIMM to inform

the cache that the value on its internal DRAM has changed.

Moreover, writes by the host may end up in the cache, mak-

ing it impossible to send a signal, such as a kernel launch, to

the AXDIMM.

Guaranteeing cache coherence. Thus, applications

should always access the AXDIMM through read and write

functions provided by the runtime for correct execution

that guarantees cache coherence. The runtime first enables

the host-side write-back cache for the memory space of the

AXDIMM to improve performance. For read transactions

by the host, the runtime issues a cache line flush instruc-

tion (CLFLUSH ) followed by two 32-byte load instructions

(VMOVDQA) to ensure that the value is always served by

the AXDIMM, not by the cache. Note that the size of a cache

line is 64 bytes. For write transactions, the runtime uses two

32-byte store instructions with a non-temporal memory hint

(VMOVNTDQ). It makes the write go into a specialized write-

combining buffer instead of the cache. Thus, the two stores

are likely to be combined into a 64-byte data item and will

reach the AXDIMM as soon as possible. A vector instruction

set, such as AVX512, will perform even better, but our target

system does not support it.

4.2 Runtime API Functions

The runtime also contains helper functions to use the

AXDIMM, such as managing DRAM spaces in the AXDIMM,

launching a kernel, switching the arbiter mode, and copying

the memory contents to other devices. Table 2 shows some

examples of the runtime API functions. The platform run-

time is implemented as a Linux shared library (libaxdimm.so)

so that an application can be compiled and linked with it.

4.3 Pinning Pages

For high CPU-GPU communication bandwidth, a range of

pages to be transferred should be pinned before the com-

munication. Pinning is the process of marking the pages in

the address space as non-pageable. Non-pageable pages are

guaranteed to have the same physical addresses. Thus, the

GPU can directly access only pinned pages without CPU

intervention.

Technically, the virtual address range mapped to the mem-

ory space of the AXDIMM can inherently be considered

pinned because their corresponding physical addresses in-

side the AXDIMM never change. However, the naïve imple-

mentation of Linuxmmapmarks the virtual address range of

the AXDIMM physical address space as that of an IO device.

In Linux, the I/O-mapped address range is treated differently

from a physical address range in many ways. Especially, the

Linux kernel does not allow to pin the I/O-mapped pages. To

circumvent this, we mark page table entries for the pages in

the AXDIMM physical address space to be pinned as if they

resided in a hot-plugged physical memory unit[4]. Moreover,

5



Heehoon Kim, Daeyoung Park, Jinpyo Kim, Junsik Shin, and Jaejin Lee

Table 2. Examples of runtime API functions.

Type Functions

Resource Management
Axdimm(device);

Initialize the AXDIMM runtime with the AXDIMM module pointed by device (e.g., /dev/axdimm0).

RegisterStorage(device);

Register a new NVMe SSD pointed by device, for use by the runtime (e.g., /dev/nvme0n1).

Memory Management†
MallocX(nbytes, channel);

Allocate nbytes on the device X and returns a pointer to the allocated space.

FreeX(ptr);

Free the memory allocation on the device X pointed by ptr.

MemcpyX2Y(dst, src, nbytes);

Copy nbytes from the address src of the device X to the address dst of the device Y.

AXDIMM Management
SetArbiterAcc(channel);

Set the arbiter of the specified channel to the acceleration mode.

RunAdamOnAxdimmAsync(p, m, v, g, nparams, ..., t, channel);

Run the Adam computation kernel asynchronously on the specified channel.
† The device X and Y can be the host CPU, the AXDIMM, the GPU, or an NVMe SSD.

Time

𝜃0
Initialization

GPU
𝜃1

Initialization𝜃0
G → A 𝜃1

G → A

𝐿0
Forward𝜃0

A → G

𝐿1
Forward

𝜃1
A → G

𝜃2
Initialization 𝜃2

G → A

𝐿2
Forward𝜃2

A → GAXDIMM Ch0

AXDIMM Ch1

(a) Initialization and forward propagation.

𝐿𝑁−1
Backward𝜃𝑁−1

A → G

𝐿𝑁−2
Backward

Time

GPU

AXDIMM Ch0
∇𝜃(𝜃𝑁−1)
G → A

𝜃𝑁−1
Param Update

AXDIMM Ch1
𝜃𝑁−2

A → G
∇𝜃(𝜃𝑁−2)
G → A

𝜃𝑁−2
Param Update

𝐿𝑁−3
Backward𝜃𝑁−3

A → G

𝐿𝑁−4
Backward∇𝜃(𝜃𝑁−3)

G → A
𝜃𝑁−3

Param Update𝜃𝑁−4
A → G

∇𝜃(𝜃𝑁−4)
G → A

𝜃𝑁−4
Param Update

(b) Backpropagation and parameter updates.

Figure 4. A timeline of the initialization and a single training iteration with our framework. G and A denotes the GPU and the

AXDIMM, respectively. Blocks with the same color belong to the same layer, thus they should be accessed sequentially.

we mark the AXDIMM pages as reserved ones to prevent

the AXDIMM from being allocated for Linux kernel use.

Such an approach allows us to manage the AXDIMM as a

typical DIMM and to use well-known communication run-

time APIs.

4.4 Data Transfers between the GPU and NVMe SSDs

In a few cases, it is beneficial for GPUmemory contents to be

directly offloaded to storage devices. However, a naïve GPU-

storage communication is staged through a bounce buffer in

the main memory. For higher communication bandwidth, we

exploitGPUDirect Storage[5] for the GPU to access the NVMe

SSDs directly. GPUDirect Storage provides direct memory

accesses (DMAs) between the GPU and the storage device

on the same PCIe root. The DMA improves communication

bandwidth and prevents wasting the DRAM bandwidth due

to the staged copy. To support GPUDirect Storage, we im-

plement I/O operations using the cuFile APIs[3].

6



Synergistic Approach for Systems

with AXDIMMs, GPUs, and NVMe Devices

5 DL Framework for the AXDIMM

Tensors in training a DL model can be classified into four

groups: parameters, activations, gradients, and optimizer

states. Widely used DL frameworks, such as PyTorch and

TensorFlow, allocate all the tensors in the GPU memory in

the training process. If the total size of the tensors exceeds

the GPU memory capacity, the training process causes an

Out-Of-Memory (OOM) error.

5.1 Proposed DL Framework

To overcome this problem, we provide a library compati-

ble with the existing DL framework PyTorch[25], one of

the most popular DL frameworks, to support training large

DNN models with the AXDIMM. The library runs on top

of PyTorch, and no source code modification of PyTorch it-

self is required. The library internally uses the runtime API

functions described in Section 4.2.

Before the training starts, our library replaces PyTorch

layers with our own layer implementations. The replacing

layers have essentially the same functionalities as the re-

placed ones but have some extra functionalities. For example,

they check if the input is a parameter tensor and prefetch

the tensor into the GPU memory before computation starts.

PyTorch also provides a mechanism to register hooks that

are called when the tensors are accessed during the back-

propagation phase or after the gradient computation has

finished. We exploit the hooking mechanism to prefetch ten-

sors, send the gradients to the AXDIMM, and execute the

parameter update kernel.

5.2 Tensor Offloading and Prefetching

We observe that not all tensors are accessed simultaneously

during the training process. For example, a parameter tensor

is accessed only by the layers that own the tensor. Optimizer

states, on the other hand, are accessed only in the parameter

update step during the training process. We can train large

DNN models that do not fit into the GPU memory with-

out OOM errors by offloading tensors that are not accessed

currently to a location other than the GPU.

Initializing a large DNN model. Figure 4 shows the

timeline of the initialization and a single training iteration

of a DNN model on our framework. The parameter tensors

are allocated and randomly initialized on the GPU during

the DNN model initialization. For a large DNN model, the

total size of the parameter tensors alone may already exceed

the GPU memory capacity, resulting in an OOM error even

before the training phase starts.

Thus, we offload each tensor to the AXDIMM as soon

as it has been initialized. Moreover, the corresponding op-

timizer states are also offloaded to the AXDIMM unit. For

optimization, we allocate the parameter tensors on the chan-

nels in the AXDIMM in a round-robin manner. Note that

even though each channel has independent internal DRAM,

the data transfer between the host and the AXDIMM should

be sequential because they share the same DDR4 link.

Tensor prefetching. During the forward propagation

phase, the GPU cannot start the computation until the pa-

rameters of the current layer are copied back. Thus, these

tensors should be prefetched before the GPU accesses them

to prevent underutilization of the GPU. PyTorch manages its

own CUDA stream[2] and enqueues computation into the

stream. A CUDA stream is a FIFO queue bound to a thread

that keeps processing requests in the queue. Since the stream

is usually full of computations, a computation request en-

queued by PyTorch will be served later. Thus, if our platform

starts to fetch the associated tensors when PyTorch enqueues

a computation, it has a net effect of prefetching tensors. Since

our platform runtime enqueues its prefetch requests into a

separate CUDA stream dedicated to data transfer, the tensors

are fetched in parallel with the computation of the previous

layer, maximizing computation-communication overlap.

Gradient offloading. The backward computation of each

layer produces a gradient tensor passed to the previous layer,

or it is the gradient of the parameter tensor. When it is

the gradient of the parameter tensor, it is transferred to

the AXDIMM, and its memory space in the GPU is freed

immediately.

Advantages over the existing DL frameworks. In the

existing DL frameworks, such as PyTorch and TensorFlow

[6, 25], the parameter update step is usually done after the

backpropagation step has completed because both steps in-

volve computations on the GPU and cannot execute in par-

allel. In contrast, our AXDIMM architecture has two inde-

pendent channels. Thus, the parameter update kernel can

execute by accessing one channel while it uses the other

channel to transfer data from the GPU. Thus, our frame-

work overlaps the backward computation on the GPU, the

data transfer between the GPU and the AXDIMM, and the

parameter update step to hide the data transfer overhead.

5.3 Exploiting NVMe SSDs

For large models that do not even fit into the memory space

of the AXDIMM, the NVMe SSDs are used as secondary

backup storage. At the initialization, the runtime sends the

remaining parameters to the NVMe SSDs after the memory

space of the AXDIMM is fully occupied.

Whenever the GPU requires the parameters saved in the

NVMe SSDs, the runtime initiates a set of DMA operations

to transfer them directly from the NVMe SSDs to the GPU.

After the computation of the gradients completes, they and

their corresponding parameters and optimizer states need to

be gathered in the AXDIMM to update parameters. In this

case, the runtime evicts the tensors in the memory space

of the AXDIMM until enough space is secured. The tensors

that have already been used in the parameter update step

7



Heehoon Kim, Daeyoung Park, Jinpyo Kim, Junsik Shin, and Jaejin Lee

CPU

DDR4 Memory

AXDIMM

DRAM

DRAM

FPGA

DDR4 1600MT/s
Max. 12.8 GB/s

NVMe SSD

NVMe SSD

GPU

DDR4 800MT/s 

Max. 6.4GB/s

DDR4 800MT/s

Max. 6.4GB/s

PCIe 3.0 x16

Max. 16GB/s

PCIe 3.0 x4

Max. 4GB/s

PCIe 3.0 x4

Max. 4GB/s

DDR4 1600MT/s
Max. 12.8 GB/s

Figure 5. Target system components and the bandwidth of

each link.

of the current iteration have a higher priority on eviction

because they will not be used until the next iteration.

6 Evaluation

In this section, we evaluate our AXDIMM platform.

6.1 System Configuration and DNN Models Used

System configuration. The platform consists of a single

Intel multicore CPU, 32GBDDR4DIMM for the host memory,

AXDIMM, and NVIDIA GPU. In addition, it has two 2TB

NVMe SSDs. The system configuration is summarized in

Table 3 and shown in Figure 5.

DNN models used. To evaluate the proposed AXDIMM

platform, we use theMegatron[36] implementation of GPT[9,

28]. We modify it to run on a single GPU. GPT is a series of

language models that consist mostly of the decoder layers of

the Transformer model[40]. The number of the decoder lay-

ers can be adjusted to obtain models with a different number

of parameters. Table 4 shows the configurations of different

GPT models used for the evaluation. It also shows the hy-

perparameters of each model in the training phase. 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 ,

𝑑𝑚𝑜𝑑𝑒𝑙 , 𝑛ℎ𝑒𝑎𝑑𝑠 , 𝑑ℎ𝑒𝑎𝑑 , and 𝑛𝑐𝑡𝑥 are the number of decoder

layers, the number of hidden units in the linear layers, the

number of heads in the multi-attention layer, the size of each

attention head, and the size of the context window in the

number of words, respectively. The model configurations

are slightly different from the original GPT because of the

limitation of Megatron. 𝑛𝑝𝑎𝑟𝑎𝑚𝑠 ,𝑚𝑝𝑎𝑟𝑎𝑚𝑠 ,𝑚𝑜𝑠 are the total

Table 3. Target system configuration.

Mainboard Intel DBS2600CW2

CPU Intel Xeon E5 2698 v4

Memory
DDR4 32GB 800MT/s,

AXDIMM (See Table 1)

GPU NVIDIA Tesla V100 32GB

NVMe 2 x Seagate FireCuda 520 SSD

number of parameters in the model, the total size of parame-

ters, and the total size of optimizer states, respectively. Note

that we choose all the configurations large enough to cause

the OOM error if they are trained with the original PyTorch.

6.2 Performance of the Adam Kernel

We first evaluate the performance of our Adam kernel imple-

mentation in the AXDIMM. In this experiment, we assume

that the inputs to the kernel already reside in the AXDIMM

internal DRAM. We measure the time taken until the Adam

kernel finishes processing all the inputs and writes the result

back to the internal DRAM.

We compare the AXDIMM Adam kernel to the manually

optimized Adam kernel with SIMD instructions on the CPU

(say CPU baseline). The inputs reside in the host memory

for the CPU baseline, and the outputs are written back to the

host memory.We execute the CPU baseline with a single core

because we observe no performance improvement when we

exploit multiple cores. The reason is that Adam is memory

bound.

We measure the throughput in the units of the

number of processed parameters (millions) per second

(MP/s). Adam needs four loads and three stores to up-

date each parameter. They are summed to (4 + 3) ∗

(the size of one parameter) = 28 bytes. Thus, the the-

oretical maximum throughput is the theoretical memory

bandwidth divided by 28 bytes.

The experimental result in Table 5 shows that the

AXDIMM Adam kernel has 5.6X higher throughput over

the CPU baseline. There are two reasons for the significant

performance difference. One is that the AXDIMM has di-

rect cycle-accurate control over its DRAM. The AXDIMM

Adam kernel achieves over 86% of the theoretical maximum

throughput. In contrast, the CPU base accesses the data

through its memory hierarchy, limiting the throughput when

many misses occur. Thus, the CPU base achieves only 61%

of the theoretical maximum throughput. The other reason

is that the AXDIMM has two independent DRAM channels,

each of which runs at twice the frequency of the host mem-

ory. It results in another four-fold throughput increase.

6.3 Training the GPT Models

Next, we evaluate the performance of our AXDIMM plat-

form to train the GPT models in Table 4. We compare our

AXDIMM platform with a baseline platform. The baseline

platform uses the same AXDIMM runtime and PyTorch as

those used in the AXDIMM platform. Instead of offload-

ing tensors to the AXDIMM, the baseline offloads them to

the host memory, and the CPU updates parameters, not the

AXDIMM. If the host memory overflows in the baseline plat-

form, it saves the evicted tensors in the NVMe SSDs. These

evicted tensors should be fetched from the NVMe SSDs in

the next iteration. The same thing is true for the AXDIMM

memory in the AXDIMM platform.

8



Synergistic Approach for Systems

with AXDIMMs, GPUs, and NVMe Devices

Table 4. Configurations of the GPT models and Hyperparameters used in the training.

Name 𝑛𝑙𝑎𝑦𝑒𝑟𝑠 𝑑𝑚𝑜𝑑𝑒𝑙 𝑛ℎ𝑒𝑎𝑑𝑠 𝑑ℎ𝑒𝑎𝑑 Batch Size 𝑛𝑐𝑡𝑥 𝑛𝑝𝑎𝑟𝑎𝑚𝑠 𝑚𝑝𝑎𝑟𝑎𝑚𝑠 (𝐺𝐵) 𝑚𝑜𝑠 (𝐺𝐵)

GPT-3 Large 24 1,536 16 96 3 1,152 760M 3.0 6.1

GPT-3 XL 24 2,064† 24 86† 2 1,024 1.3B 5.2 10.4

GPT-3 2.7B 32 2,560 32 80 1 1,024 2.7B 10.8 20.2

GPT-3 6.7B 32 4,096 32 128 1 1,024 6.7B 26.8 53.6

GPT-3 13B 40 5,120† 40 128 1 512 13.0B 52.0 104.0
† We use a different value from the original because Megatron supports only models with 𝑑𝑚𝑜𝑑𝑒𝑙 = 𝑛ℎ𝑒𝑎𝑑𝑠 ∗ 𝑑ℎ𝑒𝑎𝑑 .

Table 5. Performance (throughput = million parameters per

second) comparison for Adam between the AXDIMM and

the CPU.

Device Theoretical Measured Efficiency

CPU baseline 228.57 MP/s 140.32 MP/s 61.4%

AXDIMM 914.29 MP/s 789.38 MP/s 86.3%

Since the operating system and PyTorch are running on

the host memory, we cannot assign the entire 32GB of the

host memory space to the training process. We let the base-

line utilizes 16GB of the host memory in all experiments.

Thus, we limit the AXDIMM to use only 16GB (8GB per

channel) of its DRAM for a fair comparison. The baseline

uses a single dedicated CPU core for Adam, while PyTorch

and the AXDIMM runtime utilize other cores.

In both platforms, the GPU performs forward and back-

ward computations. Thus, the amount of memory and stor-

age space consumed by both platforms will be the same. By

comparing them under this setup, we can see the net effect

of the AXDIMM on performance.

We measure the time and the peak NVMe storage usage

for each training iteration of the GPT models in Table 4. Ta-

ble 6 shows the experimental result. It shows the breakdown

of a single training iteration into the forward and backward

passes. The forward pass shows almost no performance dif-

ference because both platforms have exactly the same tensor

access patterns and locations.

In the backpropagation pass, however, the AXDIMM plat-

form outperforms the baseline up to 1.74×. The main reason

is that, unlike the CPU, the AXDIMM fully overlaps the pa-

rameter update with the data transfer. As the model becomes

large, the data transfers between the AXDIMM (or the host

memory in the baseline) and the NVMe SSDs become a more

dominant factor in performance; thus, the speedup gradually

decreases to 1.28× from 1.63×.

The result indicates that the AXDIMM outperforms the

normal DIMM in training large DNNmodels. It is a promising

application area of the AXDIMM.

7 Related Work

In this section, we briefly describe the related work to the

proposed approach.

7.1 Near-Memory Computing and AXDIMM

The memory wall[14], is one of the long-lasting and still

important problems, not yet solved, in modern computer

architectures even though it has been quite mitigated by

the saturation of the processor frequency due to the power

wall[14]. Main memory accesses are much slower than the

CPU computation, so the data transfer between the CPU and

the main memory becomes the performance bottleneck.

Near-Memory computing (NMC) is an architectural model

that combines DRAM and processor logic on a single die.

The processors near the memory access data at a low cost

and mitigate the memory wall problem especially for data-

intensive tasks[13, 19, 22, 37, 43].

There are three types of NMC implementations[37]: CPU-

based, ASIC-based, and reconfigurable. The CPU-based im-

plementation integrates a general-purpose CPU and DRAM

together[11]. It is the most flexible but requires significant

hardware resources and consumes considerable energy. The

ASIC-based implementation integrates a special-purpose

ASIC and DRAM together[41]. It saves hardware resources

and energy using the ASIC but is restricted to specific appli-

cations. Finally, the reconfigurable implementation uses re-

configurable processors[18], such as FPGAs and CGRAs[12].

An AXDIMM developed by Samsung is an FPGA-based

reconfigurable NMC device that integrates reconfigurable

processors and DRAM together[20]. It exploits both the flex-

ibility of the CPU-based NMC implementations[11] and the

performance of the ASIC-based NMC implementations[41].

Ke et al.[20] offload the memory-intensive embedding

layers of the Deep Learning Recommendation Model

(DLRM)[24] to an AXDIMM, which significantly improves

the inference throughput on the CPU. Their evaluation

shows a significant improvement in the latency, energy sav-

ings, and throughput over a regular DIMM. Unlike Ke et

al.[20], we exploit an AXDIMM for the Adam optimizer,

which is a memory-intensive task and one of the most ex-

pensive components in training DNN models.

Programming models. There are two types of program-

ming models for NMC devices. One is to use the near-

memory processor as an accelerator or helper processor for

the specific tasks offloaded from the host. For example, Soli-

hin et al.[38] propose a User-Level Memory Thread (ULMT)

running on a helper processor near the main memory for

9



Heehoon Kim, Daeyoung Park, Jinpyo Kim, Junsik Shin, and Jaejin Lee

Table 6. Performance (execution time in seconds) comparison for training the GPT models between the AXDIMM and the

baseline.

Model
Baseline AXDIMM Speedup

(Backward)

Speedup

(Total)

Peak NVMe

Usage (GB)Forward Backward Total Forward Backward Total

GPT-3 Large 0.78 8.01 8.79 0.80 4.60 5.40 1.74 1.63 0.9

GPT-3 XL 2.12 19.31 21.42 2.14 13.28 15.43 1.45 1.39 9.8

GPT-3 2.7B 4.78 43.09 47.87 4.79 30.45 35.23 1.42 1.36 26.1

GPT-3 6.7B 13.12 115.17 128.29 13.55 88.17 101.72 1.31 1.26 78.4

GPT-3 13B 25.24 221.62 246.86 26.21 166.25 192.45 1.33 1.28 153.1

correlation prefetching. Their proposal prefetches data from

the main memory based on the correlations between mem-

ory accesses determined by the user-level thread running on

the helper processor. The other is explicitly separating the

host system and the NMC system and connecting them us-

ing a network interface. Alian et al.[7] propose the Memory

Channel Network (MCN) architecture. Their approach modi-

fies the Linux device driver and mimics the message passing

interface (MPI) over Ethernet between the host and NMC

systems. Our platform uses the AXDIMM as an accelerator

for the Adam optimizer used in DNN models.

7.2 Training Large DNN Models

Parallelization. A common approach to training a large

DNN model by overcoming the GPU memory capacity prob-

lem is to parallelize the model across multiple GPUs using

various parallelization strategies, such as data, model, and

pipeline parallelism[17, 29, 31, 36]. Among others, ZeRO[29]

proposes a new type of data parallelism that evenly dis-

tributes the tensors to all the GPUs only at the cost of 1.5×

communication. These approaches still allocate all tensors in

the GPUmemory. Thus the model size is eventually bounded

by the sum of the memory capacities of all the GPUs.

Swapping tensors. Another solution is to use the main

memory or storage devices to store tensors temporarily using

the swapping mechanism. It swaps in/out GPU memory

objects to the CPU memory or NVMe SSDs[8, 15, 16, 23, 26,

29ś34, 42].

Among others, ZeRO-Offload[33] searches for an optimal

offloading strategy for training a large DNN model with

the help of the host memory. ZeRO-Offload proposes the

following:

• Offloading the parameters and the optimizer state to

the CPU memory.

• Executing the forward propagation and the backprop-

agation on the GPU.

• Updating the parameters on the CPU can achieve the

minimum communication volume between the GPU

and the CPU.

ZeRO-Infinity[30] is an extension to ZeRO’s data parallelism.

If the GPU memory overflows, it offloads the parameter,

gradient, and optimizer-state tensors to the CPU memory.

Then, it further offloads those tensors to the NVMe SSDs

when the CPU memory becomes full.

8 Conclusions

This paper introduces an AXDIMM platform specialized for

training large DNN models. Specifically, it solves the GPU

memory oversubscription problem caused by the large DNN

models with high performance. The target platform consists

of a CPU, an AXDIMM, a GPU, and two NVMe SSDs. It also

has a normal DIMM. Among the tensors used in the DNN

training with the GPU, the parameters and optimizer states

are offloaded to the AXDIMM. The Adam optimizer imple-

mented in the FPGA of the AXDIMM updates the parameters.

The parameters and the optimizer states are evicted to the

NVMe SSDs and restored from them as needed. In addition,

the parameters are prefetched to the GPU before they are

accessed.

We build a platform runtime that enables the AXDIMM

to be used with the GPU and NVMe SSDs. We also provide

a PyTorch-compatible library on top of the runtime to facil-

itate training the real-world DNN models. The evaluation

result shows that the parameter update on the AXDIMM

outperforms the CPU baseline by 5.6×. In training large GPT

models with various sizes, the AXDIMM platform achieves

speedups from 1.26× to 1.63× over the baseline that uses

the normal DIMM. The proposed technique is orthogonal

to the parallelization of DNN models, so it can be applied

to large-scale distributed training to break the limit on the

DNN model size.

10



Synergistic Approach for Systems

with AXDIMMs, GPUs, and NVMe Devices

References
[1] 2013. AMBA® AXI™ and ACE™ Protocol Specification.

https://developer.arm.com/documentation/ihi0022/e/AMBA-

AXI3-and-AXI4-Protocol-Specification

[2] 2022. CUDA Runtime API. https://docs.nvidia.com/cuda/cuda-

runtime-api/index.html

[3] 2022. cuFile API Reference Guide. https://docs.nvidia.com/gpudirect-

storage/api-reference-guide/index.html

[4] 2022. Memory Hot(Un)Plug. https://www.kernel.org/doc/html/latest/

admin-guide/mm/memory-hotplug.html

[5] 2022. NVIDIA Magnum IO GPUDirect Storage Overview Guide. https:

//docs.nvidia.com/gpudirect-storage/overview-guide/index.html

[6] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. TensorFlow: a system for Large-Scale ma-

chine learning. In 12th USENIX symposium on operating systems design

and implementation (OSDI 16). 265ś283.

[7] Mohammad Alian, Seung Won Min, Hadi Asgharimoghaddam,

Ashutosh Dhar, Dong Kai Wang, Thomas Roewer, Adam McPad-

den, Oliver O’Halloran, Deming Chen, Jinjun Xiong, et al. 2018.

Application-transparent near-memory processing architecture with

memory channel network. In 2018 51st Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO). IEEE, 802ś814.

[8] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hak-

beom Jang, Tae Jun Ham, and Jae W. Lee. 2021. FlashNeuron: SSD-

Enabled Large-Batch Training of Very Deep Neural Networks. In 19th

USENIX Conference on File and Storage Technologies (FAST 21). USENIX

Association, 387ś401.

[9] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish

Sastry, Amanda Askell, et al. 2020. Language models are few-shot

learners. Advances in neural information processing systems 33 (2020),

1877ś1901.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

2018. Bert: Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805 (2018).

[11] Mario Drumond, Alexandros Daglis, Nooshin Mirzadeh, Dmitrii Ustiu-

gov, Javier Picorel, Babak Falsafi, Boris Grot, and Dionisios Pnev-

matikatos. 2017. The mondrian data engine. ACM SIGARCH Computer

Architecture News 45, 2 (2017), 639ś651.

[12] Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and

Nam Sung Kim. 2015. NDA: Near-DRAM acceleration architecture

leveraging commodity DRAM devices and standard memory mod-

ules. In 2015 IEEE 21st International Symposium on High Performance

Computer Architecture (HPCA). IEEE, 283ś295.

[13] Saugata Ghose, Amirali Boroumand, Jeremie S Kim, Juan Gómez-Luna,

and Onur Mutlu. 2019. Processing-in-memory: A workload-driven

perspective. IBM Journal of Research and Development 63, 6 (2019),

3ś1.

[14] John L Hennessy and David A Patterson. 2011. Computer architecture:

a quantitative approach. Elsevier.

[15] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and

Venkatesh Akella. 2020. AutoTM: Automatic Tensor Movement in

Heterogeneous Memory Systems Using Integer Linear Programming.

In Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’20). Association for Computing Machinery, New York, NY,

USA, 875ś890.

[16] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Push-

ing Deep Learning Beyond the GPU Memory Limit via Smart Swap-

ping. In Proceedings of the Twenty-Fifth International Conference on

Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS ’20). Association for Computing Machinery, New York,

NY, USA, 1341ś1355.

[17] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao

Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui

Wu, et al. 2019. Gpipe: Efficient training of giant neural networks

using pipeline parallelism. Advances in neural information processing

systems 32 (2019).

[18] Zsolt István, David Sidler, and Gustavo Alonso. 2017. Caribou: Intelli-

gent distributed storage. Proceedings of the VLDB Endowment 10, 11

(2017), 1202ś1213.

[19] Liu Ke, Udit Gupta, Benjamin Youngjae Cho, David Brooks, Vikas

Chandra, Utku Diril, Amin Firoozshahian, Kim Hazelwood, Bill Jia,

Hsien-Hsin S Lee, et al. 2020. Recnmp: Accelerating personalized

recommendation with near-memory processing. In 2020 ACM/IEEE

47th Annual International Symposium on Computer Architecture (ISCA).

IEEE, 790ś803.

[20] Liu Ke, Xuan Zhang, Jinin So, Jong-Geon Lee, Shin-Haeng Kang,

Sukhan Lee, Songyi Han, YeonGon Cho, Jin Hyun Kim, Yongsuk Kwon,

et al. 2021. Near-memory processing in action: Accelerating personal-

ized recommendation with AxDIMM. IEEEMicro 42, 1 (2021), 116ś127.

[21] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochas-

tic optimization. arXiv preprint arXiv:1412.6980 (2014).

[22] Youngeun Kwon, Yunjae Lee, and Minsoo Rhu. 2019. Tensordimm: A

practical near-memory processing architecture for embeddings and

tensor operations in deep learning. In Proceedings of the 52nd Annual

IEEE/ACM International Symposium on Microarchitecture. 740ś753.

[23] Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya.

2018. TFLMS: LargeModel Support in TensorFlow by Graph Rewriting.

ArXiv abs/1807.02037 (2018).

[24] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu

Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit

Gupta, Carole-Jean Wu, Alisson G Azzolini, et al. 2019. Deep learn-

ing recommendation model for personalization and recommendation

systems. arXiv preprint arXiv:1906.00091 (2019).

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James

Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. 2019. Pytorch: An imperative style,

high-performance deep learning library. Advances in neural informa-

tion processing systems 32 (2019).

[26] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,

Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-Based GPU Mem-

ory Management for Deep Learning. In Proceedings of the Twenty-Fifth

International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’20). Association for Com-

puting Machinery, New York, NY, USA, 891ś905.

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al.

2018. Improving language understanding by generative pre-training.

(2018).

[28] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,

Ilya Sutskever, et al. 2019. Language models are unsupervised multi-

task learners. OpenAI blog 1, 8 (2019), 9.

[29] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He.

2020. Zero: Memory optimizations toward training trillion param-

eter models. In SC20: International Conference for High Performance

Computing, Networking, Storage and Analysis. IEEE, 1ś16.

[30] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith,

and Yuxiong He. 2021. Zero-infinity: Breaking the gpu memory wall

for extreme scale deep learning. In Proceedings of the International

Conference for High Performance Computing, Networking, Storage and

Analysis. 1ś14.

[31] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He.

2020. DeepSpeed: System Optimizations Enable Training Deep Learn-

ing Models with Over 100 Billion Parameters. In Proceedings of the

26th ACM SIGKDD International Conference on Knowledge Discovery

amp; Data Mining (KDD ’20). Association for Computing Machinery,

New York, NY, USA, 3505ś3506.

11

https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-Specification
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/memory-hotplug.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html


Heehoon Kim, Daeyoung Park, Jinpyo Kim, Junsik Shin, and Jaejin Lee

[32] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li.

2021. Sentinel: Efficient Tensor Migration and Allocation on Heteroge-

neous Memory Systems for Deep Learning. In 2021 IEEE International

Symposium on High-Performance Computer Architecture (HPCA). 598ś

611.

[33] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji

Ruwase, Shuangyan Yang, Minjia Zhang, Dong Li, and Yuxiong He.

2021. ZeRO-Offload: Democratizing Billion-Scale Model Training. In

2021 USENIX Annual Technical Conference (USENIX ATC 21). 551ś564.

[34] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar,

and Stephen W. Keckler. 2016. vDNN: Virtualized Deep Neural Net-

works for Scalable, Memory-Efficient Neural Network Design. In The

49th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO-49). IEEE Press, Article 18, 13 pages.

[35] Sebastian Ruder. 2016. An overview of gradient descent optimization

algorithms. arXiv preprint arXiv:1609.04747 (2016).

[36] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley,

Jared Casper, and Bryan Catanzaro. 2019. Megatron-lm: Training

multi-billion parameter language models using model parallelism.

arXiv preprint arXiv:1909.08053 (2019).

[37] Gagandeep Singh, Lorenzo Chelini, Stefano Corda, Ahsan Javed Awan,

Sander Stuijk, Roel Jordans, Henk Corporaal, and Albert-Jan Boonstra.

2018. A review of near-memory computing architectures: Opportu-

nities and challenges. In 2018 21st Euromicro Conference on Digital

System Design (DSD). IEEE, 608ś617.

[38] Yan Solihin, Jaejin Lee, and Josep Torrellas. 2002. Using a user-level

memory thread for correlation prefetching. In Proceedings 29th Annual

International Symposium on Computer Architecture. IEEE, 171ś182.

[39] Harold S Stone. 1970. A logic-in-memory computer. IEEE Trans.

Comput. 100, 1 (1970), 73ś78.

[40] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.

Attention is all you need. Advances in neural information processing

systems 30 (2017).

[41] Erik Vermij, Leandro Fiorin, Christoph Hagleitner, and Koen Bertels.

2017. Sorting big data on heterogeneous near-data processing systems.

In Proceedings of the Computing Frontiers Conference. 349ś354.

[42] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuai-

wen Leon Song, Zenglin Xu, and Tim Kraska. 2018. Superneurons:

Dynamic GPU Memory Management for Training Deep Neural Net-

works. In Proceedings of the 23rd ACM SIGPLAN Symposium on Princi-

ples and Practice of Parallel Programming (PPoPP ’18). Association for

Computing Machinery, New York, NY, USA, 41ś53.

[43] Salessawi Ferede Yitbarek, Tao Yang, Reetuparna Das, and Todd Austin.

2016. Exploring specialized near-memory processing for data intensive

operations. In 2016 Design, Automation & Test in Europe Conference &

Exhibition (DATE). IEEE, 1449ś1452.

12


	Abstract
	1 Introduction
	2 Background
	2.1 Deep Learning
	2.2 Adam Optimizer

	3 Implementations in the AXDIMM
	3.1 Proposed Architecture in the AXDIMM
	3.2 Arbiter Implementation in the FPGA
	3.3 Adam Kernel Implementation in the FPGA
	3.4 Effect of the Block Size

	4 Runtime for the AXDIMM
	4.1 Cache Coherence
	4.2 Runtime API Functions
	4.3 Pinning Pages
	4.4 Data Transfers between the GPU and NVMe SSDs

	5 DL Framework for the AXDIMM
	5.1 Proposed DL Framework
	5.2 Tensor Offloading and Prefetching
	5.3 Exploiting NVMe SSDs

	6 Evaluation
	6.1 System Configuration and DNN Models Used
	6.2 Performance of the Adam Kernel
	6.3 Training the GPT Models

	7 Related Work
	7.1 Near-Memory Computing and AXDIMM
	7.2 Training Large DNN Models

	8 Conclusions
	References

